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ABSTRACT 

 

With the development of computer Chinese Chess, some effective algorithms are proposed. This 

paper presents a new algorithm named Minors Hash Table, an innovation of hash table application 

specific to computer Chinese Chess. For the sake of generality, this algorithm is applicable to most 

other Chinese Chess programs without much difficulty of code modification. The algorithm could 

increase the speed of almost every program by more than 10 percent, and this leads to significant 

performance improvement. This paper also describes the design, operations, complexity, 

performance and especially Minors hash collision prevention in parallel search related to Minors 

Hash Table. The results of our experiments show that the proposed algorithm is reliable and stable. 

 

1. INTRODUCTION 

Chinese Chess is the most popular board game in China. Along with the great success in computer Chess, 

more and more researchers focus on computer Chinese Chess, which is more complex than computer Chess 

but less complex than computer Go (Allis L.V., 1994). Nowadays, several Chinese Chess programs are able to 

defeat human grandmasters. As far as computer Chinese Chess is concerned, some unique algorithms can be 

discovered owing to the special characteristics and rules of Chinese Chess. 

In this paper, a novel algorithm is proposed, named Minors Hash Table (abbreviated as MHT in this paper). 

The algorithm can be easily implemented and lead to more than 10 percent speedup in search time with 

respect to almost every Chinese Chess program. 

Several experiments are designed to prove our theory in this paper. The experiments are mainly based on 

NEUCHESS, one of the strongest Chinese Chess programs, which has won three world-championships and 

has equal strength as human grandmasters. Our program implements DTS algorithm (M. Campbell, 1988; R. 

M. Hyatt, 1997) and can search in multi-thread mode. In order to prove the universality of MHT, experiments 

are also applied in QiXing, which is one of the top ten Chinese Chess programs and we can access its code 

freely. The hardware environment of the experiments can be seen in APPENDIX A. 

Section 2 describes the special characteristics and piece rules of Chinese Chess, and then classifies the pieces 

into two categories according to their basic functionality. Section 3 analyzes the possibility of MHT and 

presents our design. Section 4 introduces the concrete operations in MHT. Section 5 designs some 

experiments in order to test the performance of MHT. Section 6 analyzes the performance of MHT and 

discusses several key points to achieve the best performance. Section 7 demonstrates an advanced Minors hash 

collision prevention of MHT in parallel search. Finally, our conclusion is presented in Section 8. 

2. SPECIAL CHARACTERISTICS OF MINORS 
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Chinese Chess is a two-player, zero-sum game with complete information, which includes a 90-legal-spot 

board and 32 pieces, as seen in Figure 1. The two sides are named RED and BLACK, whose pieces are signed 

with corresponding colors. The detailed characteristics of board and piece rules can be seen in the paper (Shi-

Jim Yen, Jr-Chang Chen, Tai-Ning Yang, S.C. Hsu., 2004; Hans Bodlaender, 2000; Leventhal Dennis A, 

1978). In the following subsections we describe and analyze the special characteristics of Chinese Chess, and 

then summarize some useful disciplines. 

2.1 Mobility and Activity Scope of Pieces 

The 32 pieces can be categorized into 7 kinds, each kind differing in their mobility and activity scope. Here, 

the mobility refers to the maximal number of legal moves of a specific piece, while the activity scope means 

the number of reachable spots of a kind of piece. 

Piece Abbreviation Mobility Activity Scope 

rook R 17 90 

horse H   8 90 

cannon C 17 90 

pawn P   3 55 

king K   4  9 

elephant E   4  7 

advisor A   4  5 

Table 1: Mobility and activity scope of pieces. 

As can be seen in Table 1, the details are discussed below.  

 Rook and cannon have the largest mobility and they can reach every spot of the board. 

 Pawn is never allowed to move backward and can only move forward before crossing the river. Pawn has 

three legal directions when it steps into the other side’s territory.  

 Elephant is not allowed to cross the river. There are a total of seven legal spots for each side. 

 King and advisor can move only within the palace, and both have at most four possible legal moves. 

2.2 Pieces Classification 

To clarify the functionality of pieces, Definition 1 is proposed. 

Definition 1: (Pieces Classification) 

All the seven kinds of pieces are split into two categories. 

Majors= (Rook, Cannon, Horse), 

Minors= (King, Pawn, Elephant, Advisor). 

The classification is based on the following three perspectives. 
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Figure 1: Board and pieces of Chinese Chess. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Jr=Chang.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yang:Tai=Ning.html
http://www.getcited.org/mbrz/11086640
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(1) Activity scope: Majors can reach all the ninety joint points on the board, while Minors can only move 

within restricted scopes. 

(2) Mobility: Minors have less mobility and are relatively unimportant for both attack and defense. Each 

Chinese Chess position has forty legal moves on average, and the contribution of Minors is relatively less 

before mid-game phase in comparison to Majors. 

(3) Piece original functionality: Majors can either attack the opponent or protect their own king. Advisor and 

elephant, on the contrary, are to protect the king, whose shapes play a great role in king-safety. Therefore 

they can be regarded as protective pieces. Pawn is a special piece, whose limited mobility makes it 

scarcely attackable unless it occupies dangerous spots. 

Furthermore, in some specific situations, protective pieces can also help attacking its opponent. Three special 

situations exist as follows. 

 In Chinese Chess, cannon cannot capture pieces unless a rack is given. So Minors can be used as racks to 

help attacking. 

 Due to king face-to-face rule, Minors can choose the right time to expose their king, so as to improve attack 

intensity. 

 Minors can limit the mobility of enemy’s pieces, which is another kind of attack. 

3. DESIGN OF MINORS HASH TABLE 

Hash table is an important technique in computer games. Transposition Table (Nelson H.L., 1985; Breuker, 

D. M., Uiterwijk, J. W. H. M., Herik and H. J. van den., 1996; Breuker, D. M., Uiterwijk, J. W. H. M. and 

Herik, H. J. van den., 1997) and Pawn Table (R.M. Hyatt, R. and H.L. Nelson., 1985) are widely used in 

computer Chess, both of which are based on hash table. Apart from them, MHT is another extended 

application of hash table in computer Chinese Chess. 

This section demonstrates the design and implementation of MHT. Section 3.1 analyzes the principle of 

MHT. Section 3.2 describes the function design of the algorithm. Section 3.3 explains the typical structure 

designed in NEUCHESS. 

3.1 Minors Unchanged Rate 

We have classified all the pieces into Majors and Minors in Section 2. Chinese Chess is a fierce game, and 

Majors moves occupy higher proportion than Minors moves in the game tree. Therefore Majors moves 

account for the vast majority of all branches, and Minors moves remain unchanged on those nodes. On the 

other hand, evaluations of game positions account for most computing time and are mainly invoked on leaf 

nodes. Thus we are more concerned about the rate at which Minors keep unchanged on leaf nodes. To validate 

this hypothesis, Definition 2 is proposed. 

Definition 2: (Minors Unchanged Rate and Majors Unchanged Rate) 

Several abbreviations are defined as follows. 

L: The set of leaf nodes which invoke the evaluation function. 

MI: The number of unique Minors status in L. 

MA: The number of unique Majors status in L. 

N: The number of elements in L. 

MIUR: Minors Unchanged Rate. 

MAUR: Majors Unchanged Rate. 

MIUR and MAUR can be computed as below.  

MIUR= 1-MI/N 

MAUR= 1-MA/N 

An experiment is designed on NEUCHESS to gain MIUR and MAUR. Five phases are categorized according 

to Majors material value (rook accounts for 2, horse and cannon accounts for 1, therefore the Majors number 

is the sum of all Majors corresponding value of both sides on the board). One thousand positions are collected 

in each of the five phases respectively, and the search configuration can be seen in Appendix B. The data on 

leaf nodes is collected. 
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Majors material value MI MA N MIUR MAUR 

11~16 533,855 23,236,341 36,592,662 98.5% 36.5% 

9~10 632,869 6,112,267 11,467,666 94.5% 46.7% 

7~8 1,720,133 3,793,245 9,852,583 82.5% 61.5% 

4~6 1,553,888 1,392,894 5,902,084 73.7% 76.4% 

0~3 214,442 92,086 719,429 70.2% 87.2% 

Table 2: MIUR and MAUR on leaf nodes. 

MIUR on leaf nodes is very high in all five phases, as can be seen in Table 2. With the Majors number 

decreasing, the MIUR decreases too. Comparing with MIUR, MAUR is relatively low when Majors material 

value is greater than 6. This indicates the Majors contribute more to the game tree than Minors before 

endgame, especially in opening-game.  

Moreover, there can be some correlation between MIUR and forward pruning search algorithm (Smith, S. J. J. 

and Nau, D. S., 1994; Y. BjÄornsson, T.A. Marsland and J. Schaeffer., 1997). NEUCHESS uses many 

forward pruning algorithms, much more than QiXing. The same experiments applied on QiXing, and the 

MIUR is higher than that in NEUCHESS in all phases. Because forward pruning algorithms cut many nodes 

due to the predicted influence of moves, and Minors moves are generally considered unimportant. Therefore 

most of the Majors moves remain and are used to expand the game tree. Under such condition, it is evident 

that MIUR is relatively lower. The issue will be discussed detailedly in Section 5.2.  

3.2 Function Design of Minors Hash Table 

It is a very special characteristic of Chinese Chess that MIUR is very high on leaf nodes, suggesting that 

computations may be saved if repeated evaluations of Minors can be avoided. If we can store Minors 

information in some kind of table and retrieve it when Minors status is matched, the goal can be achieved. 

Fortunately, hash table is a nice tool to solve similar issues in the field of computer games. We propose an 

algorithm entitled MHT, which is based on hash table. 

Minors evaluation should be separated from global evaluation before implementing MHT. Minors evaluation 

evaluates Minors irrespective of the Majors status. In addition, necessary operations of MHT are carried out 

which consist of storage and retrieval processing in evaluation function.MHT can provide not only evaluation 

score, but also some valuable Minors information. The status of Minors is significant for global evaluation 

especially in king-safety evaluation in Chinese Chess. MHT can provide that information when probe hits 

instead of computing them in the global evaluation. 

It should be noted that MHT is only used in the evaluation function, not in the search process as Transposition 

Table. Transposition Table stores sub-game-tree search information of temporal nodes and the information 

can be used when identical position is found. Transposition Table is an algorithm with a bit risk because 

almost all programs use the information for forward pruning. As far as MHT is concerned, it is a harmless 

algorithm without any risks. 

However, the MAUR is also very high in all phases. But due to the characteristics of Chinese Chess, it does 

not make sense to evaluate Majors separately. 

3.3 Attributes of Minors Hash Table 

An example that is applied in NEUCHESS can be seen in Table 3. 
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Type Bits Name 

U64 64 checksum 

   int 32 score 

char  8 phase 

char  8 advisor_num_r 

char  8 advisor_num_b 

char  8 elephant_num_r 

char  8 elephant_num_b 

char  8 pawn_num_r 

char  8 pawn_num_b 

char  8 fatal_pawn_num_r 

char  8 fatal_pawn_num_b 

char  8 king_door_r 

char  8 king_door_b 

Table 3: Attributes of one entry in MHT. 

The checksum and score are two fundamental attributes of MHT. 

 Checksum: The 64-bit checksum is the hash key for verification. It is a very common practice in hash 

table. In Section 4 this shall be discussed in more detail. 

 Score: Evaluation score for Minors. It should be noted that the score is set in the respect of the red side. 

 Phase: Phase is a very special attribute in MHT. In Chinese Chess, the Minors importance constantly 

changes with the progress of the game. Normally, almost every advanced program has several very 

different evaluation functions for Minors, corresponding to different phases. The phase attribute is to 

represent the evaluation functions by which the Minors score is computed. Furthermore, the score is valid 

only if the phase attribute stored in the table is identical to the phase of current node, where the evaluation 

function is called. Phase indicates the Majors information corresponding to the Minors score. In 

NEUCHESS, there are two values for phase, one is BeforeEndgame and the other is InEndgame. 

BeforeEndgame means the current processing of the game is in opening-game or mid-game, while 

InEndgame is in endgame. However, it does not matter if readers separate the whole game into more 

phases. 

Other attributes represent important information of Minors. 

 pawn_num_r, pawn_num_b: Pawns’ number for each side. The information is essential for evaluation 

especially in endgame. 

 elephant_num_r, elephant_num_b, advisor_num_r, advisor_num_b: Elephants’ and advisors’ number 

for each side. Those purely protective pieces’ numbers are the key points to distinguish whether the king is 

in danger or not. 

 king_door_r, king_door_b: Some special shapes of Minors can be stored in the table, e.g. King-door. 

King-door is the only escape spot of king when two advisors form a kind of shape. 
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Figure 2: King-door. 

Figure 2 shows an example of king-door. The spot marked bold dot is the king-door. King-door is the only 

escape spot of king when two advisors form a special kind of shape. It is very dangerous when king-door is 

controlled by opponent and many enemy Majors are attacking. 

 fatal_pawn_num_r, fatal_pawn_num_b: Some pawns are extremely dangerous with the help of Majors 

when they occupy important spots. 

The attributes listed above are only the typical implementation details of NEUCHESS, and should not be 

unchangeable rules. Actually, we have omitted some attributes which are hard to understand for readers. 

Attributes can be customized to meet the specific demands of readers. 

4. OPERATIONS OF MINORS HASH TABLE 

This section describes the operations of MHT, including initialization (Section 4.1), addressing and 

verification (Section 4.2), and storage/retrieval processing (Section 4.3). 

4.1 Initialization 

4.1.1 Preparing Zobrist Array for MHT 

Normally, a Chinese Chess position is comprised of pieces specific information and the side to move, but the 

latter can be neglected in MHT. Minors’ information can be encoded by 64-bit hash key as signature values by 

Zobrist hashing (Zobrist A.L., 1988). 

Preparing Zobrist hashing array goes first in initialization, which is a two-dimensional arrays and each 

attribute contains a 64-bit random number. 

64 [9][55]U Zobrist
                                                           

(1) 

The first dimension denotes piece type, and the second coordinates. There are eight kinds of pieces (king, 

advisor, elephant and pawn for both sides) for Minors, and totally 9 kinds in the first dimension with zero 

meaning no piece. Pawn has the largest activity scope among Minors and it is obvious that the maximum size 

of the second dimension is 55. MHT and Transposition Table are two very different applications without 

conflict, therefore we can simply reuse the random number array built by Transposition Table, avoiding 

building another coordinate system of Minors. 

http://chessprogramming.wikispaces.com/Albert+Zobrist
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4.1.2 Memory Allocation 

Before using MHT, a block of memory should be allocated to avoid instant allocation. Fortunately, each entry 

occupies a fixed memory size and the maximal entry number (signed as 
bucketS ) can be set in initialization. 

Moreover, all the entries should be reset before being used. Minors signature (signed as MS ) of any position 

is computed by Formula 2. Only the Minors status is concerned, therefore the right side of the formula only 

includes Minors information of both sides. 

[ ][ ( )]
m Minors

MS Zobrist m Pos mXOR


                                      (2) 

Where Minors  is the set of Minors pieces and ( )Pos   means the coordinate of a specific piece. It is a time-

consuming way to generate Minors signature every time entering evaluation function. However, we could 

record and maintain the Minors signature throughout the game tree, which is a better mechanism to achieve 

the same result (Zobrist A.L., 1988).  

4.2 Addressing, Verifying and Replacing 

Using 0 to 264-1 to create index of MHT is reasonable, so that all the address and entries are one-to-one 

mapped. However it is astonishing when we calculate the memory requirement. In our example, each entry 

occupies 192-bit memory, and totally 402,653,184T RAM is in demand. For contemporary computers, it is 

impossible to afford such a large memory, therefore a compromise scheme should be found. Fortunately, there 

is a successful experience of solving similar problems in computer games. In that approach, 64-bit Minors 

signature is limited within 0 to 1
bucketS  . Formula 3 shows how to calculate the address. 

%
bucket

Address MS S
                                               

(3) 

In accordance with that method, it is inevitable to cause collision that different positions can be mapped to the 

same address. In retrieval processing, to solve this kind of collision, the 64-bit Minors signature is also stored 

in the table, which is called checksum. Thus additional verification operation should be included in retrieval 

processing. While in storage processing, newer data should replace older ones. 

4.3 Processing of Minors Hash Table 

In the storage processing, old data is always replaced by the new one. In the retrieve processing, verification 

operation confirms that the data is exactly corresponding with current Minors status. Algorithm 1 

demonstrates the processing of MHT in evaluation function, written in C++. 

//the procedure of MHT based on original evaluation 

0     int Evaluation (GameTree *tree, int rtm){ 

           int score; unsigned __int64 address; 

MINOR_HASH_ENTRY * entry, entryData; 

//address computing 

1        address = (tree->MinorSignature)%BUCKETSIZE; 

          //probe corresponding entry 

2       entry = MinorsHashTable[address]; 

//verification using checksum 

3       if (entry->Checksum != tree->MinorsSignature 

 || entry->phase != tree->CurrentPhase) { 

                //not hit or not same phase, evaluate Minors normally 

4             entryData = EvaluateMinors(); 

               //store the information into MHT 

5            *entry = entryData; 

          } 

          //evaluate other things using Minors information 

6       score = GlobalEvaluate(entry); 

http://chessprogramming.wikispaces.com/Albert+Zobrist
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         //add Minors evaluation score 

7       score += entry->score; 

            //return the score, rtm(red to move) is a variable to indicate the moving side. 

8           return (rtm ? score : -score); 

} 

Algorithm 1: Processing of MHT in evaluation. 

The bold lines are the additional operations beyond original evaluation function. If the Minors signature of the 

current position is equal to the checksum of the found entry, and meanwhile the phase value in the entry is 

identical to that of the current node, the Minors information can be directly retrieved and used. Otherwise all 

the attributes are filled by Minors evaluation function and stored into MHT as one entry. 

4.4 Using MHT Information in Global Evaluation 

It is easy to understand that Minors evaluation can be skipped when MHT hits, but how to use MHT 

information in global evaluation need to be concerned. So a simple example is given as follows.  
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Figure 3: An example about using MHT information. 

Can be seen in the Figure 3, the red side has a right overhead cannon and a rook controls black king_door, 

and it is extremely dangerous for the black side. To distinguish this special posture, several conditional 

judgments are executed in global evaluation function. Before this processing, MINOR_HASH_ENTRY which 

records MHT information is filled (line 1 to line 5 in Algorithm 1). So after the red right overhead cannon 

and “d” line rook being confirmed, the coordinate of black king_door can be directly achieved from 

MINOR_HASH_ENTRY. It is obviously that MHT can save time by avoiding king_door computing. 

The given example above is a typical application of using MHT information in global evaluation, and actually 

much more similar cases can be found in NEUCHESS, especially in king-safety evaluation function. 

5. COMPLEXITY AND PERFORMANCE IMPROVMENT 

This section will discuss the complexity and performance improvement of MHT. Section 5.1 presents 

theoretical analysis. Section 5.2 discusses how to choose the appropriate MHT size. Section 5.3 designs 

experiments to show the performance improvement. 

5.1 Time Complexity Analysis 

Expectation of random variable X can be denoted as  E X . The expectation of evaluation time without 

MHT can be computed by Formula 4. 
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( ) ( ) ( ) ( )
ENM EG EM GMS

E T E T E T E T  
                                           

(4) 

Where 
ENM

T  is the time for evaluation without MHT, 
EG

T  for evaluating global information of the position 

except Minors, 
EM

T  for evaluating Minors, and 
GMS

T  for generating Minors status. 

The expectation of evaluation time with MHT can be denoted as Formula 5. It should be noted that the cost in 

updating MS in game-tree is negligible and it is not made into account. 

( ) ( ) ( ) (1 ) ( ( ) ( ) ( ))
EWM EG MR EM GMS MS

E T E T E T p E T E T E T      
           

(5) 

Where 
EWM

T  is the time for evaluation with MHT, 
MR

T  for MHT retrieval, and 
MS

T  for MHT storage. p  is 

the probability of MHT probe hit. Although building 64-bit index is impossible, our experiments show that p  

is close to MIUR if BUCKETSIZE is big enough (at least 219).  

The difference between 
ENM

T  and 
EWM

T  can be computed by Formula 6. 

( ) ( ) ( ) ( ) (1 ) ( ) ( )
ENM EWM EM GMS MS MR

Diff E T E T p E T p E T p E T E T                      (6) 

Normally, 
EM

T  is very complex and p  is very high, however both the 
MS

T and 
MR

T  can be negligible 

compared to 
EM

T . Therefore Diff is a positive number and MHT can bring significant time-saving in almost 

all cases. 

5.2 Best Choice of MHT Size 

In the implementation of NEUCHESS, all the attributes are encoded into three 64-bit variables, in order to 

eliminate hash collision in parallel search (more details can be seen in Section 7.2), so each entry occupies 

192-bit. Readers may wonder how to choose the appropriate MHT size, in other words, how many entries are 

set in MHT is suitable. In this sub-section, the issue shall be discussed in two aspects. 

5.2.1 Probe Hit Rate and MHT Size 

As can be seen in Formula 6, only if p  is very high and approximates MIUR, the performance improvement 

is prominent. Whereas, since complete indexing is impossible and collisions inevitably happen, p  could not 

reach MIUR. 

In normal sense, p  has close connection with MHT size, and bigger memory space means fewer collision 

occurrences. An experiment is designed to discover the relationship between them. One thousand opening-

game positions are collected, and the search configuration can be seen in Appendix B. The statistics of probe 

hit rate is collected for different MHT sizes. 

Probe hit rate Entry number (by power of 2) MHT size (MB) 

98.34% 20   24 

98.70% 21   48 

98.96% 22   96 

99.08% 23 192 

99.14% 24 384 

99.18% 25 768 

Table 4: Probe hit rate and MHT size in opening-game. 

As shown in Table 4, with the increment of MHT size, the probe hit rate increases too. Probe hit rate exceeds 

99% and is close to MIUR when MHT size is bigger than 96MB. The experiment is based on opening-game 

positions. Furthermore, the experiment is applied on mid-game and endgame, and the results show they have 

similar property on probe hit rate as opening-game. 
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5.2.2 Performance Improvement and MHT Size 

As discussed in Section 5.2.1, bigger MHT size means higher probe hit rate and lower collision probability, so 

more useful information could be stored in the table and more Minors evaluation time can be saved. However, 

it may not be concluded that the performance is directly in proportion to MHT size, as operations on larger 

space in memory cost more time. As shown in Formula 6, bigger MHT size means higher p , but 
MR

T and 

MT
T  increase at the same time. Therefore, it is hard to say whether Diff  is positive. 

An experiment is designed to clarify the correlation between the performance improvement and MHT size. 

One thousand positions from opening-game are collected, and the search configuration can be seen in 

Appendix B. Then the MHT size is adjusted and the corresponding consumed time is recorded. It should be 

noted that the average computing time without using MHT is 1398 seconds. 

 

 

 

 

 

Average computing time 

(Second) 

Performance improvement Entry number 

(by power of 2) 

MHT size 

(MB) 

1194 14.59% 17    3 

1184 15.31% 18    6 

1173 16.09% 19  12 

1170 16.30% 20  24 

1168 16.45% 21  48 

1167 16.52% 22  96 

1173 16.09% 23 192 

1176 15.88% 24 384 

1185 15.24% 25 768 

Table 5: Performance improvement and MHT size. 

As can be seen in Table 5, the computing time corresponding different MHT size does not vary a lot. If the 

MHT size is lower than 3MB or higher than 768MB, the computing time is relatively longer. As far as 

contemporary computers are concerned, the appropriate setting of MHT size is at least 24MB and not more 

than 384MB, which can be regarded as empirical solution for the selection of MHT size. 

5.3 Experiments on Performance Improvement 

An experiment is designed to show performance enhancement, and the search configuration can be seen in 

Appendix B. One program is equipped with 96MB MHT and the other is not. Under such configuration, all 

the search details of two programs are identical except for computing time. One thousand games are played 

on MOVESKY (The most famous Chinese Chess web platform) using the program with MHT. After that the 

program without MHT runs the games again. The collected data is shown in Figure 4. 
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Figure 4: Performance improvement trend. 

It can be seen that the performance improvement ratio decreases with the proceeding of games. The trend is 

accordant with the MIUR in Table 2, and the performance improvement ratio is very amazing especially 

before mid-game. 

Furthermore, same experiments are applied on QiXing and 16.5% performance improvement ratio is gained 

on average, as QiXing has a more complex Minors evaluation and higher probe hit rate. 

6. PERFORMANCE ANALYSIS 

This section discusses the performance of MHT. Section 6.1 discusses the correlation between search strategy 

and performance improvement. Section 6.2 analyzes the performance discrepancy when we reset the MHT 

table after each move or not. Section 6.3 introduces the concept of occupancy rate and analyzes it in two 

different modes. 

6.1 Search Strategy and Performance Improvement 

As mentioned in Section 3.1, search strategy is closely correlated with MIUR, and it influences the 

performance of MHT to a large extent. Unlike Deep Blue, which is based on brute force search and relied on 

custom-built hardware(Hsu, Feng-hsiung, 2002; Murray Campbell, A. Joseph Hoane Jr. and Feng-hsiung 

Hsu., 2002), more selective search algorithms are developed in present-day Chess and Chinese Chess 

programs(Ye.C. and Marsland T.A., 1992; Marsland, T. A.,1986). The advanced programs normally utilize 

many forward pruning search algorithms. The efficiency and accuracy of search is the joint action of all 

search algorithms, and they may influence each other. These typical forward pruning algorithms include 

Nullmove (Donninger C., 1993; Heinz E.A., 1999; Omid David and Netanyahu N., 2002), Razor 

(Birmingham J.A. and Kent P., 1977; Heinz E.A., 2000), Futility (Heinz, E.A., 1998) and LMR (also known 

as History Pruning or History Reductions. Winands, M.H.M., Werf, E.C.D. van der and Herik, H.J. van den, 

2006; Tord Romstad, 2003). 

An experiment is designed to prove the correlation. In preparing for the experiment, the 1000 opening-game 

and mid-game positions are collected, since all the forward pruning search algorithms are forbidden in 

endgame in practice. To simplify the experiments, we disable all the forward pruning algorithms at first, and 

then we gradually enable each algorithm in NEUCHESS. Subsequently we make the program search the 

position, and the configuration can be seen in Appendix B. This experimental approach can eliminate the 

mutual effect of the algorithms. The collected experimental data is shown in Table 6. 

Forward pruning algorithms enabled Improvement rate of MHT 

None +15.52% 

LMR +13.99% 

http://en.wikipedia.org/wiki/Feng-hsiung_Hsu
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Campbell:Murray.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hoane_Jr=:A=_Joseph.html
https://chessprogramming.wikispaces.com/Omid+David
https://chessprogramming.wikispaces.com/Nathan+S.+Netanyahu
https://chessprogramming.wikispaces.com/Mark+Winands
https://chessprogramming.wikispaces.com/Erik+van+der+Werf
https://chessprogramming.wikispaces.com/Jaap+van+den+Herik
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Razor and Futility +13.60% 

Nullmove +12.91% 

Enable all the above +12.87% 

Table 6: MHT performance and search algorithms. 

Seen in Table 6, the search algorithms listed in the left column are sorted in ascending order according to 

their cutting aggressiveness, their corresponding improvement rate of MHT decreases. The improvement rates 

are all prominent, especially disabling all of them, in which case the program is some kind of a brute-force 

one. 

We can more deeply explore the relationship between search strategy and performance improvement. The 

total search time can be computed as Formula 7. (total time is signed as TT, search processing is signed as SP, 

move generation is signed as MG and evaluation is signed as EV) 

( ) ( ) ( ) ( )
TT SP MG EV

E T E T E T E T  
                                    

(7) 

Where 
SP

T is the requisite time to proceed the search, including expansion and resumption of game tree, 

search information storage and retrieval, move ordering, operations on search tables and timing etc. 
MG

T  is 

the time to generate needed legal moves to meet specific requirements, and 
EV

T  is the time to evaluate static 

positions. 

It is known 
EV

T  can be reduced by MHT. Providing that the 
EV

T  occupies higher proportion in 
TT

T , the time 

saved by MHT is more remarkable. It should be noted that more aggressive the search strategy, and more time 

consumed by 
SP

T and
MG

T , lead to lower proportion of 
EV

T and less performance improvement of MHT. 

The experimental statistics prove our hypothesis: the more aggressive the search strategy is, the lower the 

performance improvement rate of MHT. 

6.2 Reset or Not 

Unlike Transposition Table, the Minors shape information and their static evaluation score is irrelevant to 

game tree, therefore the search boundary and other search information could not be poisoned by MHT. All the 

Minors information retrieved from MHT is trustable and need not any additional verification, no matter 

whether the data is produced by current or former search processing. 

Since the Minors significance has much difference in endgame phase and former phases (as can be seen in 

Section 3.4), the date stored in former phases is useless for endgame phases. For that reason, all the entries of 

MHT should be reset as game goes into endgame from later- mid-game. 

The “reset” topic can be thought more deeply. How would the performance change if MHT is cleared after 

each move? It is obviously that the question link tightly with MHT size. In the experiment, two programs are 

built such that the first one resets MHT after each move and the other one does not. As we all know, 

providing that the two programs start at same position and they are limited to the same fixed search depth and 

single thread mode, the same game procedure would be got and only the computing time is different. 

Therefore one thousand opening-game positions are collected as start position. The two programs are set as 

shown in Appendix B, and they hold self-play games and the computing time in the games are accumulated. 

The performance is inversely proportional with accumulated computing time, and the comparison of 

accumulate search time can be regarded as performance difference, which can be computed as Formula 8. 

( ( ) ( )) / ( )
NoReset Reset Reset

PerformanceDiff E T E T E T                                  (8) 

Where 
NoReset

T  is the accumulated computing time of the program does not reset MHT, while 
Reset

T  is for the 

program that resets MHT after each move. The MHT size is set to different values and the experimental 

results are shown in Table 7. 
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Performance difference MHT size (MB) 

+0.18%  24 

+0.03%  48 

+0.12%  96 

+0.11% 192 

+0.30% 384 

+0.42% 768 

Table 7: Performance with reset versus without reset. 

As can be seen in the table, if we clear the MHT after each move, not more than 0.5% performance is gained 

at all MHT size settings. It can be inferred that the performance of MHT has close connection with the 

pertinence of game tree. The Minors information generated by previous searches has little use to later search 

processing. Therefore whether resetting MHT after each move or not has little influence on MHT 

performance. 

6.3 Occupancy Rate 

The performance improvement of MHT can be seen generally in Section 5.2, but how many entries have 

useful data and the ratio to total entry number are still unknown. The ratio is named as occupancy rate. 

In the implementation of NEUCHESS, each entry occupies 192-bit (more details can be seen in Section 7.2). 

So the entry number can be computed according to the MHT memory size. For example, 96MB MHT size 

means there are 222 entries in the table. 

To demonstrate the relationship between occupancy rate and MHT size, two experiments are designed. In both 

experiments, and the search configuration can be seen in Appendix B, after that the MHT size is changed and 

NEUCHESS plays 1000 games with QiXing from different start positions, which are selected by random in 

opening book. It is obvious that the same game procedure would be got, and the different MHT sizes lead to 

different computing times and average occupancy rates. 

The only difference between the two experiments is that the first experiment resets all the entries after each 

move and the second one does not. The result of the first experiment is shown in Table 8. 

 

 

 

Average occupancy rate Used memory (KB) MHT size (MB) 

65.5% 16,098  24 

46.9% 23,053  48 

29.7% 29,197  96 

16.9% 33,227 192 

 9.2% 36,176 384 

 4.8% 37,749 768 

Table 8: Occupancy rate with reset operations. 

As mentioned in Section 6.1, it is not necessary to reset MHT after each move in real circumstance, but the 

operation can avoid confusion. The trend of the occupancy rate can be clearly seen in all different sizes and 

different phases. As can be seen in the Table 8, the average occupancy rate corresponding with 24MB size is 

65.5%, which means there are 686,818 from 1,048,576 entries having useful data while others being empty. 

The average occupancy rate decreases and the used memory increases with the increment of the MHT size. 

When the MHT size reaches 768MB, only 4.8% of all entries have useful data.  

The second experiment shows the variation of occupancy rate if we do not reset MHT after each move. It 

means that the information in MHT which generated by the former search processing can be used for the later 

ones. 
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Peak occupancy rate Used memory (KB) Move number to reach 

peak occupancy rate 

MHT size (MB) 

99.9% 24,552 18  24 

99.8% 49,054 52  48 

99.6% 97,911 69  96 

94.4% 185,598 76 192 

75.9% 298,451 76 384 

51.1% 401,867 76 768 

Table 9: Occupancy rate without reset operations. 

In the experiment, it can be found that the occupancy rate reaches certain value and hardly changes with the 

carrying out of the game, and the value is named as peak occupancy rate. The peak occupancy rate and the 

average move number to stabilize it corresponding to different MHT sizes are shown in Table 9. The peak 

occupancy rate reaches 99.9% when the MHT size is set to 24MB or less, and decreases with the increment of 

MHT size. Only 51.1% of all entries are useful when the MHT size is 768MB. But the used memory increases 

with the increment of the MHT size, the same as that in reset mode. 

7. LOCKLESS ALGORITHM IN PARALLEL SEARCH 

Many Chinese Chess programs use parallel search algorithm to make full use of computing resource of multi-

core computer and gain better performance (M. Campbell., 1988; M.G. Brockington., 1996; Valavan 

Manohararajah., 2001). This section discusses how to prevent hash collision in MHT, which is a very 

common issue in parallel search (Warnock, T. and Wendroff, B., 1988). Section 7.1 discusses the motivation 

and derivation of lockless algorithm. Section 7.2 presents the modification for lockless algorithm in primary 

MHT scheme. Section 7.3 designs an experiment to show the performance of lockless algorithm. 

7.1 Motivation and Derivation of Lockless Algorithms 

In parallel search, hash collision inevitable happens if no prevention is adopted (R.M. Hyatt and Cozzie A., 

2005). To prove the existence of hash collisions of MHT, an experiment is designed. The search configuration 

of NEUCHESS can be seen in Appendix B and the verification is added. When probe hits, the normal Minors 

evaluation function is called to distinguish whether the retrieved information from MHT is correct, and the 

disparity implies the collision happens. 

One hundred games are played on CHESSSKY using this program. As is expected, Minors hash collision 

occurs occasionally. The emergence of collisions is random, in each position search, 26 collisions found under 

the worst condition but no collision happens sometimes. On average, approximately 8 collisions are found in 

each search. Although the collision rate is low compared with the amount of searched nodes (about 15 million 

per search on average), it may lead to wrong evaluation score and poison the search tree. Even in some 

specific cases, the search results could be influenced by Minors hash collision. 

According to the experience in preventing generating corrupt data in parallel processing, lock/unlock 

technique and mutex signal control are two popular methods. The common collision preventions in parallel 

search incur a significant penalty, because the frequency of storage/retrieval operation is rather high in 

computer games. The nice solution is lockless algorithm, whose original idea comes from Dr. Robert Hyatt 

(R.M. Hyatt and T. Mann., 2002), and we need to modify MHT to meet the requirements.  

7.2 Implementing Lockless Hashing in MHT 

To implement lockless algorithm, there are two steps to complete the modification in our primary scheme. 

(1) New Attributes Design and Wrapping Information 

New entry has three 64-bit attributes, and the requisite information should be wrapped into them. Because 

bitwise is used to record the information, an 8-bit char like Table 3 is not necessary. Detailed information is 

shown in Table 10. 

http://chessprogramming.wikispaces.com/Robert+Hyatt
http://chessprogramming.wikispaces.com/Anthony+Cozzie
http://chessprogramming.wikispaces.com/Robert+Hyatt
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Bits Name Category(64 bit) 

64 checksum VerificationKey 

32 score ScoreData 

  2 phase  

 

 

 

 

InforData 

  2 advisor_num_r 

  2 advisor_num_b 

  2 elephant_num_r 

  2 elephant_num_b 

  3 pawn_num_r 

  3 pawn_num_b 

  3 fatal_pawn_num_r 

  3 fatal_pawn_num_b 

  7 king_door_r 

  7 king_door_b 

Table 10: Detail information. 

(2) Encoding and Decoding 

In storage processing, the ScoreData and InformationData are built by wrapping information, but 

VerificationKey should be computed by Formula 9. 

VerificationKey ScoreData XOR InforData XOR MinorSignature            (9) 

In retrieval processing, we use Formula 10 to validate data’s correctness. The codes replace 3th line in 

Algorithm1. 

( !
||  ( &0 2! )

if entry ScoreData XORentry InforData XORentry VerificationKey MinorsSignature
entry InforData X CurrentPhase
      
  

 (10) 

7.3 Accuracy and Performance of Lockless Algorithm in MHT 

(1) Accuracy Analysis 

Lockless algorithm allows different threads to write and read the same memory block concurrently. Bad data 

can be retrieved as well, but further verification is carried out on retrieved data. Position’s information is 

involved in the data, therefore it can be quickly found whether the fetched information is corresponding to the 

current position. 

In this new scheme, thousands of test games are carried out and no Minors hash collision is found anymore. 

(2) Performance Analysis 

The encoding and decoding in lockless algorithm take some computing time. Encoding operation costs more 

than decoding operation does, but encoding operation happens in higher proportion due to high hit rate. Each 

encoding operation plus decoding operation cost 7×10-5 second under our experiment circumstance. On 

average, those operations take nearly 0.03% computing time.  

The lockless algorithm slows down the program to a certain extent, but the cost is acceptable. However, it is 

wise and reasonable to spend a little computing time in exchange of more accurate computation. An 

additional gift is that more information can be wrapped into the each entry of MHT than the former scheme. 

In our example, after wrapping all information in Table 10, there are still 60 unused bits available for more 

purposes. 
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8. CONCLUSION 

The paper introduces a new algorithm named Minors Hash Table in computer Chinese Chess. All the 

implementation issues of MHT are presented in detail, which includes structure design, storage and retrieval 

processing etc. Furthermore, the complexity of MHT and several key factors which influence MHT 

performance are analyzed. Finally, the Minors hash collision prevention when implementing MHT in parallel 

search is discussed. The experimental results prove that the MHT is stable and remarkably improves 

performance for almost every program. 

On the other hand, because there is no ELO rating system (Arpad E.Elo., 1978) in computer Chinese Chess, 

which has been proved efficient in computer Chess, we could not quantify the totally performance 

improvement. The experiments in the paper mainly base on self-play or specific opponent games, and the 

experimental results show the performance indirectly. 
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 NEUCHESS 6.0 by NEUCHESS team built in January 2009. 

 QiXing1.01 by Jian-Feng Ye in August 2008. 

 Workstation set up in 2007 (4-core 2.21GHz AMD875 CPU, 4G RAM, 512KB L1 cache, 2048 KB L2 

cache, 90 nm).  

 The workstation is installed Microsoft Windows Server 2003 Standard X64 Edition Service Pack2. 

APPENDIX B: NEUCHESS SEARCH CONFIGURATION 

 16-depth limitation. 

 Single-thread mode. 

 No time-limitation. 


